BOX ELDER CACHE RICH TOOELE DUCHESNE UINTAH JUAB CARBON SANPETE MILLARD **EMERY** GRAND SEVIER BEAVER PIUTE WAYNE IRON GARFIELD SAN JUAN WASHINGTON KANE

MATERIALS INVENTORY

IRON COUNTY

UTAH STATE DEPT. OF HIGHWAYS
MATERIALS & RESEARCH DIVISION
MATERIALS INVENTORY SECTION

- POTENTIAL SOURCES
 PIT LOCATIONS
 TEST DATA
- GEOLOGY

MATERIALS INVENTORY

IRON COUNTY

REVISED AUGUST 1971

TABLE OF CONTENTS

	D	ag
PURPOS		2
PROCEDI	URES	2
MATERIA	ALS INVENTORY FORMS	3
REPORT	PREPARATION	4
Geo Geo	ICAL ASPECTS	4 5 5
DESCRI	PTION OF GEOLOGY	6
STATEM	ENT OF LIABILITY	8
PIT LO	CATIONS AND POTENTIAL SOURCES MAPS	9
TEST DA	ATA	12
	LIST OF FIGURES	
Figure	P	'ae
1-a	Preliminary Materials Survey Form MI-1	3
1-b	Code Card for Preliminary Materials Survey Form	3
2	Pit Evaluation Report Form MI-3	3
3	Materials Source Data Form MI-2	3

PURPOSE

The purpose of the Materials Inventory is twofold. First, it enables the Utah State Department of Highways to more accurately locate, investigate, and catalog the materials needed for highway construction. Second, it makes possible a system by which an accessible, permanent, and up-to-date record may be kept on every known materials site.

The inventory is valuable in avoiding wasteful duplication of work in locating materials sites. General information on known materials sites and prospective sites will be available on a county basis in booklet form. More detailed information is available from a central file in the Materials Inventory Section of the Materials and Research Division and in the respective District Materials Sections.

Notwithstanding the enormous quantities of road-building materials that are now available in Utah, it must be realized that one day these materials may be depleted or completely unobtainable due to the encroachments of man. As highways improve, the quality of materials used in highway construction must also improve. Good quality material is not readily available in all places, and this fact alone makes it necessary to locate and secure choice sites before they are depleted or become unobtainable. The advent of the Federal Highway Program has further emphasized the necessity for large quantities of high quality material for highway construction. The Materials Inventory is designed to collect, organize and tabulate all useful information related to materials available or potentially available for highway construction.

PROCEDURES

The Materials Inventory is accomplished by a logical step by step sequence as follows:

- 1. Compilation of all available site data from existing files and records.
- Acquisition of available geologic and soil map coverage of the county.
- 3. Plotting the above information on 1 inch = 1 mile county maps.
- 4. Field examination of each site to determine quantities available, to collect samples as needed, to check geologic and soil contacts, and to observe the physical setting for feasibility of material removal.

- 5. Preparation of the finished report.
- 6. Establishment of a permanent record in the Materials
 Division and District files to include detailed information
 concerning each site.

131 323

To assist in accomplishing the foregoing results, three special forms have been prepared, all of which become part of the permanent records. These forms provide details concerning the individual sites. One copy of each form is kept in the District files and one copy in the Central Materials Inventory files. The MI-1 form is designed to assist in compiling available file data and in making the field examination. A copy of this form is illustrated in Figure 1-a. It contains information relating to the approximate grading, type of material, type of deposit, rock types, surface conditions of the site (indicating obstructions to excavation, etc.), area, accessibility of the site, quantity, site number, ownership, and location. This is a specially designed form of "Needle Sort" printed by Business Forms, Inc. Notice the edges of this card. By punching or notching the card according to the code (Figure 1-b) and using the sorting needle, it is possible to rapidly sort, arrange, classify or select any information recorded on any card or group of cards in the filing system. The "Needle Sort" instruction manual gives detailed instruction as to the operation and use of this system and the reader should refer to this manual for more detailed information.

Form MI-1 is completed by the investigator as he visits each site. If laboratory test data are not available, the investigator collects a representative sample of the material, upon which laboratory tests are later performed to determine its suitability for use in highway construction.

Pertinent information from these test data is recorded on Form MI-2 (see Figure 3). This form also includes a sketch map of the deposit showing the tract subdivision, outline of the material site, drill holes, other sampled locations and information such as direction and distance from a survey station or highway. Drill hole or other sample information is logged in the columns below the sketch map.

The MI-3 form (see Figure 2) is designed to aid in the maintenance of current records. It is to be completed by the project engineer after pit operations have ceased. Included on the form are items such as quantity removed; the type, size and quality of material; and physical factors involved in pit operation.

The finished county report contains a sheet designated as "Description of Geology", describing the various geologic and soil units in detail. Following this is the "Pit Locations and Potential Sources Map". As might be inferred, this shows the location of known sites by number and symbol on a geological map, all placed on a county highway map base. The geologic information shown on the "Pit Locations and Potential Sources Map" represents a compilation from various published and unpublished sources, after field checking in pertinent areas.

MATERIALS INVENTORY FORMS

Figure 1-a. Reproduction of the Pretiminary Materials Survey Form MI-1 on the Needle-Sort card. The actual card is 8 x 5 inches.

Figure 1-b. Reproduction of code card used in punching Form MI-1.

The actual card is 8 x 5 inches.

PIT EVALUA	Form MI-3 TION REPORT (Rev. 6-64)
To: Engineer of Materials and Research	
Project Name & No	Date
Pit or Prospect No. Station L	
Legal Description	
TYPE OF MATERIAL	MATERIALS REMOVED (GU. YDS.)
Base Gravel	·
Surface Gravel (Type)	(Cu. Yds. or Tons
Concrete Sand	
Concrete Gravel	
Bituminous Surface Course Aggregate	
Granular Backfill Underdrain	
Borrow	
Other Material (Rip Rap, Chips)	
Total Gravel Removed	
Comments:	
Quality of Material	
Uniformity of Material	
Lensesgravelsand	siltClay Thickness
Amount of Oversize (+12")% Average	
Estimated Quantity Remaining	cu. yds.
Further Investigation necessary to determine	remaining quantity: yesno
Features of Pit:	
Difficulties of Operation:	
Recommendations for Future use of Pit:	
cc: District Materials Engr.	By:

Figure 2. Reproduction of the Pit Evaluation Report Form MI-3. The actual form is 8 ½ x II inches.

Source Data Form MI-2.
The actual form is II x I7
Inches.

Test information for samples obtained from each site is summarized on the "Test Data Sheet", with the corresponding pit number for identification.

Through proper use of the geologic maps, the description of geologic units, and test information, the locations of additional possible sites may be inferred.

Certain pits may contain both gravel and borrow material, making it difficult in many cases to label the material collected as representative of the pit. This also leaves some doubt as to whether a pit should be called a gravel pit or a borrow pit. As a general rule, it is assumed that any pit capable of producing gravel can be used for borrow if conditions warrant. Consequently, a pit capable of producing satisfactory gravel is normally shown as a gravel pit on the "Pit Locations and Potential Sources Map" even though it may be primarily used for borrow.

In many areas, especially where quality gravels are scarce, many sites are investigated and sampled only to find that they do not meet standard specifications for base or surface gravels. In order to avoid wasteful duplications in re-investigating and re-sampling these deposits, they are shown as rejected gravel sites on the "Pit Locations and Potential Sources Map". Rejection of these sites is usually based on excessive wear, swell, liquid limit, plasticity or sodium sulfate loss or failure to pass the immersion-compression test. Grading is seldom a requisite for rejecting a deposit because it is assumed that any coarse aggregate can be processed to meet standard grading specifications by crushing, blending or wasting part of the material. Potential borrow sites are rejected only if there is better quality material available in the immediate area. A separate "Test Data Sheet" giving the reason for rejection as well as the laboratory test values is used for the rejected sites.

REPORT PREPARATION

Materials for the Iron County Materials Inventory were mapped by geologists from the Materials Inventory Section, Materials and Research Division, Utah State Department of Highways during the months of September 1964 and January 1965.

In the Escalante Valley area of western Iron County mapping of the various soils shown on the "Pit Locations and Potential Sources Map" is based largely on the "Soil Survey of the Beryl-Enterprise Area" published by the U. S. Department of Agriculture. Detailed soil surveys for other parts of the county are not available; consequently mapping of the various soils in these areas is more general.

GEOLOGICAL ASPECTS

Geography and Physiography

Iron County covers an area of approximately 3300 square miles in south-western Utah. The climate is semiarid and no major streams persist in the county.

Physiographically the western two-thirds of Iron County is within the Basin and Range province. The Escalante Desert, a shallow, semiarid basin surrounded by volcanic highlands, occupies approximately three-fourths of western Iron County. Elevations range from under 5100 feet to over 9000 feet. The elevation of most of the volcanic highlands is less than 7500 feet.

The eastern one-third of Iron County consists of rugged highlands which form part of the Colorado Plateau physiographic province. For convenience, this area is referred to as the Kolob Terrace.

The Hurricane Cliffs, an escarpment 3000 feet high in some areas, separates the Kolob Terrace from the lower lands of the Basin and Range province. Elevations range from 5800 feet at the base of the Hurricane Cliffs to over 11,000 feet at Brian Head.

General Discussion

Precambrian rocks are not exposed in Iron County. Lower Paleozoic outcrops are exposed only in isolated thrust-plates in northwestern Iron County. They are not considered significant potential aggregate sources because of their remoteness and limited areal extent.

Upper Mississippian, Pennsylvanian, and Lower Permian rocks do not crop out in Iron County. Upper Permian outcrops are restricted to isolated areas at the base of the Hurricane Cliffs east of Kanarraville.

Triassic rocks are restricted to the Hurricane Fault zone; however, their area of outcrop is much more extensive than that of the Permian rocks. A marine limestone near the base and a conglomerate near the center form the only potential aggregate sources in the Triassic section.

Jurassic rocks crop out in three locations: along the eastern margin of the Kolob Terrace, in the Iron Mountain district, and in the Wah Wah Mountains. The lower part consists of cross-bedded, eolian sandstone which forms spectacular cliffs. The upper part consists of limestone, sandstone, siltstone, mudstone, and gypsum deposited in a mixed marine and nearshore environment. Most of the Jurassic rocks are too soft to be considered potential aggregate sources.

Cretaceous strata crop out in the Kolob Terrace and the Iron Mountain district. The section in the Kolob Terrace consists of sandstone, sandy shale, conglomerate, and coal deposited largely in a nearshore environment. These are overlain by thin-bedded sandstones with lesser amounts of siltstone, limestone, and conglomerate which were deposited by streams and in small fresh-water lakes.

The Cretaceous section in the Iron Mountain district was deposited in a continental environment and is composed of conglomerate and coarse sandstone with minor amounts of shale and limestone. Pebbles in the conglomerate are similar to those in the Triassic conglomerates and were derived, most likely, from the same Precambrian and Lower Paleozoic sources. Except for these conglomerates, the Cretaceous sediments are too soft to be considered good aggregate sources.

Tertiary sedimentary rocks are most prominently exposed on the Kolob Terrace, although smaller outcrops are scattered throughout the county. Except for isolated outcrops of Miocene age occurring in the extreme southwestern part of the county, the Tertiary sediments are believed to be of Eocene and possibly, Paleocene age. The deposits consist of conglomerate, sandstone, lacustrine limestone, and reworked volcanic ash and tuff. Pebbles in the conglomerates are similar to those in the Cretaceous and Triassic conglomerates and were most likely derived from them.

Tertiary extrusive rocks form the bulk of the bedrock exposed in Iron County. Volcanic activity appears to have started in central Nevada near the end of Eocene time and spread over the entire southwestern Utah and adjacent Nevada area during later Tertiary time. Extrusive activity was most intense during the Oligocene. The volcanics are mainly of acidic or intermediate composition and occur as ignimbrites (welded tuffs), flows, and pyroclastics.

Extrusion of rocks of predominantly basaltic composition began late in the Tertiary Period and continued well into the Recent Epoch. The latest evidence of volcanic activity is manifest in cinder cones which occur near the edge of the Hurricane Cliffs. Ash has obscured the underlying basalt in the immediate area of the cones. The bulk of the gravels in the aggregate deposits is derived from Tertiary volcanic rock.

The oldest Quaternary sediments in Iron County are alluvial fans and related deposits. Lacustrine gravel, sand, and clay related to Lake Bonneville was deposited over much of the Escalante Valley during the Pleistocene Epoch. Recent alluvium consists of alluvial fans, valley fill, sand dunes, stream channel and floodplain deposits. Talus and landslides form minor deposits in areas of steep relief.

Origin and Distribution of Aggregates

The most extensive gravel deposits in Iron County are found in alluvial fans and related alluvial plains formed by coalescing fans. From a highway construction standpoint, the most important of these are developed along the base of the Hurricane Cliffs east of U. S. Highway 91 (I-15). Most of the gravel in these fans is derived from Mesozoic and Tertiary conglomerates. The pebbles are composed of quartzite and sandstone with lesser amounts of limestone, quartz, chert, and assorted volcanics. Locally, where Tertiary volcanic rock caps the Hurricane Cliffs, the gravel in the fans consists almost entirely of basalt.

Alluvial fans are also extensively developed along the margins of the Tertiary volcanics which form highlands throughout the county. Gravel in these fans is composed almost entirely of assorted volcanic rocks. Basalt, olivine basalt, rhyolite, andesite, trachyte, and welded tuffs predominate. Obsidian is locally abundant and traces of chert, opal, chalcedony, jasper, and other varieties of quartz are commonly found. Because several of these rock types, especially rhyolite, dacite, andesite, opal and chalcedony react deleteriously with cement, many of these gravel deposits may not be suitable for concrete aggregate.

Lake terrace gravels deposited along the margins of the estuary of Lake Bonneville that extended into Escalante Valley are sometimes found as low gravel ridges. More often the lake gravels are buried under several feet of finer-grained material. Because these buried gravels are seldom reflected in the topography, drilling is the best method of locating them. Gravels exposed in the banks of dry washes often indicate potential gravel sources. Detailed soil maps, which may aid in locating buried gravel deposits, are available for most of the area underlain by lacustrine gravels.

The lacustrine gravels are composed primarily of acidic and intermediate volcanics with lesser amounts of basalt, quartzite, and limestone. They can be recognized as lake deposits because of definite bedding planes which generally are not apparent in alluvial deposits.

Sand dunes cover extensive areas in the northern part of the Escalante Valley. They are composed of fine-grained quartz sand that is suitable for borrow.

Cinder cones surrounded by volcanic ash are found in several areas near the Hurricane Cliffs. Where they are accessible from the highways, they form potential aggregate deposits. In the past they have been used mainly for maintenance and local building block construction.

Recent alluvium & colluvium

Channel and flood plain deposits related to active streams, recent alluvial fans, talus, and landslide debris; generally form potential aggregate sources where present in sufficient quantity.

Gravelly soils

River and lake terrace deposits, alluvial fans, alluvial plains, gravel covered pediments, and valley fill (bolson) deposits; form the principle sources of aggregate in Iron County.

Sandy & silty soils

Fluvial and lacustrine deposits; generally found in the lower end of gently sloping alluvial fans which coalesce to form alluvial plains, in abandoned flood plains and terraces, and in near shore areas of lake deposits; often contain lenses of gravel too small to be mapped; form potential borrow sources.

Clayey soils

Lacustrine sediments deposited in offshore areas of Lake Bonneville and related Pleistocene lakes and in more recent playa lakes; often contain alkaline salts or other evaporites; generally not suitable for borrow.

Dune sand deposits

Brown, highly calcereous, moderately coarse sands; form dunes ranging from 5 to 30 feet high; generally elongated in a northeast-southwest direction; most appear to be stabilized at the present time; potential sources of borrow.

Landslide deposits

Found mainly along the Hurricane Cliffs; the largest slides are developed in soft shales of the Tropic Formation; not considered potential aggregate sources.

Quaternary basalt

Flows, dikes, and cinder cones of dark gray to black olivine basalt; texture ranges from hard, dense to scoriaceous; may be considered future aggregate sources.

Volcanic ash & cinders

Thick deposits of dark-red to black volcanic ash and cinders surrounding Quaternary cinder cones; potentially a source of highway aggregate.

Fanglomerate

Latest Tertiary; pebbles, cobbles, and boulders of quartzite, limestone and assorted volcanics; remoteness from anticipated highway construction limits its value as aggregate.

Muddy Creek Formation

Miocene(?); vari-colored clay, silt, and sand with

Claron Formation

Eocene (?); basal conglomerate consisting of chert, quartsite, and limestone pebbles in a calcareous sandstone matrix; middle unit of red earthy limestone alternating with pebbly conglomerates and red shales; upper unit of white, pure to silty, thick-bedded, lacustrine limestone; includes units mapped as the Wasatch Formation and as the lower part of the Brian Head Formation; alluvial fans derived from the basal conglomerate form potential aggregate sources.

Rhyolite-dacite-quartz latite

Early and Late Tertiary flows and ignimbrites (welded tuffs); includes the rhyolitic ignimbrites of the Quichapa Formation, and the acidic volcanics capping the Brian Head Formation; forms potential aggregate sources.

Andesite - trachyte - latite

Early Tertiary flows, ignimbrites, and pyroclastics, and Late Tertiary flows and pyroclastics; includes the latite ignimbrites of the Needles Range Formation, the andesitic-latite ignimbrites of the Isom Formation, the latitic breccias, tuffs and flows of the Bullion Canyon Formation, and equivalents of the Page Ranch Formation of the Bull Válley District; forms potential aggregate sources.

Basalt & basaltic andesite

Flows and breccia of Early and Late Tertiary age; includes the Roger Park breccia; may be considered a potential aggregate source.

Volcanic rocks undifferentiated

Includes extrusive Volcanic Rocks not included in the above groups.

Porphyritic quartz monzonite

Stocks and fissure type veins associated with the iron ore deposits of the Iron Mountain - Granite Mountain district; forms excellent aggregate.

Cretaceous undifferentiated

Includes strata correlative to the Tropic, Straight Cliffs, and Wahweap Formations, which in several areas, grade into one another so that the individual formations cannot be differentiated; not considered a potential aggregate source.

Kaiparowits Formation

Upper Cretaceous; gray, brown, and white coarsegrained arkosic sandstones, sandy shales, and thick conglomerates; forms badland slopes and strong cliffs; the resistant sandstones and conglomerates may be considered potential aggregate sources.

Straight Cliffs 8 Wahweap Sandstones undivided

Upper Cretaceous; grayish-yellow to light orange, fine-grained, massive, cliff-forming sandstone in beds 5 to 40 feet thick; grades upward into nonresistant, slope-forming shale, siltstone and sandstone; cliff-forming sandstone in lower part may be considered a potential materials source.

Tropic Formation

Upper Cretaceous; light- to dark-gray shale with thin interbedded yellowish-orange, fine- to medium-grained sandstone and coal; forms slope; not considered a potential aggregate source.

STEEL STEEL

Iron Springs Formation

Upper (?) Cretaceous; lenticular beds of coarse, gray, brown, and red sandstone; quartz-pebble conglomerate in a gray quartzitic matrix, and variegated, fresh-water limestone; may be considered potential aggregate source.

San Rafael Group

Upper Jurassic; light-gray, shaly, very thin-bedded, locally fossiliferous limestone and light-gray to redbrown, soft, slope-forming sandstone with interbedded red-brown siltstone, mudstone and massive gypsum; includes the Carmel, Entrada, Curtis and Windsor Formations; limestone units may be considered potential aggregate sources.

Glen Canyon Group

Triassic (?) and Jurassic; reddish-orange, fine-to medium-grained, poorly-cemented sandstone with interbedded reddish-brown siltstone, mudstone, and sandstone in the lower one-half; includes the Moenhave, Kayenta, and Navajo Formations; sandstones are too friable to be considered potential aggregate sources.

Chinle Formation

Upper Triassic; variegated light-gray to grayishred, non-resistant mudstone and siltstone intercalated with thin beds of soft sandstone; not a potential aggregate source.

Shinarump Conglomerate

Middle (?) Triassic; gray, coarse, cross-bedded sandstones with lenses of gray and brown conglomerate; forms narrow ridge or vertical ledge; forms a potential aggregate source.

Moenkopi Formation

Lower Triassic; light-red to brown, shaly sandstone and mudstone interbedded with white, pink, sandy, gypsiferous shale and blue-gray, fossiliferous, bedded limestone; gray, coarse conglomerate at the base; divisible into six units; not considered a potential aggregate source.

Kaibab Limestone

Permian; blue-gray, white to yellowish, massive, locally-dolomitic limestone; crops out in narrow bands at the base of the Hurricane Cliffs east of Kanaraville; could be used for aggregate if meded.

Redwall Limestone

Lower Mississippian; gray limestone with brown to red, bedded chert; exposed in a fault block in the southern part of the Needles Range; aggregate potential restricted because of remoteness.

Sevy Dolomite

Lower Devonian; white to pink, dense dolomite and yellow, coarse-grained dolomite; only outcrop is adjacent to the Laketown dolomite; not considered a potential aggregate source.

Laketown Dolomite

Silurian; alternating beds of light and dark gray dolomite; outcrop is restricted to the southern part of the Needles Range in the northwestern part of the county; too remote to be considered a potential aggregate source.

Fish Haven Dolomite

Upper Ordovician; alternating light-gray and black dolomite; restricted to southern Needles Range; not considered a potential aggregate source.

Eureka Quartzite

Middle Ordovician; white to tan, fine-grained quartzite; also restricted to Needles Range; not considered a potential aggregate source because of its isolation and limited extent.

Pogonip Formation

Middle Ordovician; alternating beds of limestone, siltstone, and shale; restricted to isolated outcrops in the southern part of the Needles Range in northwestern Iron County; too small and too isolated to be considered potential aggregate sources.

Cambrian undivided

Middle and Upper Cambrian; alternating light- and dark-gray dolomite in the upper three-fourths; dark-gray limestone and thin, olive shale beds in lower one-fourth; restricted to the southern end of the Wah Wah Mountains northwest of Lund; may be used as aggregate if needed.

STATEMENT OF LIABILITY

No liability is expressed or implied concerning the quality or quantity of material listed for the respective sites. The data itemized are based upon sound geologic and/or geophysical interpretations in combination with tests performed upon material removed from the site, but due to the erratic depositional features of such deposits, this does not in any way guarantee that the material remaining is represented by the information obtained to date.

-6-STATE DEPARTMENT OF HIGHWAYS MATERIALS AND RESEARCH DIVISION MATERIALS INVENTORY SECTION LOGY FROM 1961 GEOLOGIC MAP OF DRAFTED BY 1.0SPINA OLYCONIC PROJECTION AND POTENTIAL SOURCES MAP SHOWING GRAVEL AND BORROW PITS AND THE RELATIONSHIP OF KNOWN MATERIALS SITES TO POTENTIAL SITES IRON COUNTY, UTAH LOCATIONS 1965 TERTIARY INTRUSIVE
Porphyritic quartz monzonite ERTIARY & QUATERNARY TERTIARY SEDIMENTARY
Muddy Creek Formation TERTIARY EXTRUSIVE Andesite - trackyte - latite
Basalt & basaltic andesite
Volcanic rocks undifferentiated Fanglomerate Claron Formation CRETACEOUS un Rhyolite-dacite-quartz latite Dune sand deposits Gravelly soils Landslide deposits Clayey soils QUATERNARY Tropic Formation Straight Cliffs & Wahweap Sa Volcanic ash & cinders Sandy & silty soils undifferentiated 11-A PIT AND SITE CLASSIFICATION: GRAVEL 0000 LAKE BONNEVILLE SHORELINE FAULT INFERRED FAULT s Pit which has been worked.

Pit which has been exhausted.

Investigated site which has not been which has been rejectives. 90 PERMIAN

Kaibab Limestone GEOLOGIC BOUNDARY JURASSIC
San Rafael Group TRIASSIC & JURASSIC Rejected site number. Pit or site number. MISSISSIPPIAN

Redwall Limestone SILURIAN
Laketown Dolomite TRIASSIC
Chinle Formation DEVONIAN
Sevy Dolomite ORDOVICIAN
Fish Haven Dolomite Moenkopi Formation Shinarump Conglomerate Pogonip Formation

	LOC	AT	ON			OW	NERSHIP		MATE	RIAL						7		TE	ST	DATA	- RE	EPRE	SEN	TAT	IVE	SAM	IPLE					
PIT OR SITE NUMBER	TOWNSHIP	RANGE	40 ACRE TRACT	QUARTER SECTION	SECTION	P = PRIVATE C = COMMERCIAL CO = COUNTY F = FEDERAL S = STATE	OWNER	USE OF MATERIAL	TYPE OF DEPOSIT	PRESENT ESTIMATED QUANTITY (CU. YDS.)	THICKNESS OF MATERIAL	DEPTH OF OVERBURDEN	DATE SAMPLED*	TYPE OF SAMPLE	DEPTH OF SAMPLE	BE CRU	FORE ISHING > I"		VE A ERCEN RUSHII			AFTE AX. SIZ NO.* 40	NO. 200	LIQUID	PLASTICITY INDEX	SWELL	A. A. S. H.O. CLASSIFICATION	OMPRESSION	AVG. P.S. L.	ABRASION 500 REV.	SOD SULP LO	HATE
11001	310	761	SE I	ATLI	2		Utah State Land Board	Bor.	Alluvial Fan	32,000	5	0	100000000000000000000000000000000000000	ample							sary	to Ob	tain	Repr	esent	ative				İ		
					1				Alluvial					e and Cut	Prov						*	*								_		
11002			\Box			F	U.S.A B.L.M.	B.G.,S.G.	Fan Alluvial	270,000	10	1		Bank Cut	-	0.0	27.	1100	70.1	35.7	29.8	12.9	5.0	15	N.P.	.009	A-1-a			24.3	5.49	11.30
11003	318	7W	NE I	WW :	15		U.S.A B.L.M. Utah State	B.G.,S.G.	Fan River	Mined Out	8	2	1951	Bank	-	0.0	41.0	6100	-	45.9	33.8	18.5	7.2	23	N.P.	.021	A-1-a			23.04	_	
11004	318	7W	E글	SE :	16	S	Land Board Utah State	B.G.,S.G.	Terrace Alluvial	15,000	7	0	1951	Bank		4.6	38.2	2100		45.6	30.1	15.5	5.7	27.4	N.P.	.020	A-1-a			22.42		
11005	31S	7W	NW S	SW :	16		Land Board	B.G.,Bor.	Fan	15,000	15	1/2	1954	Cut Bank		10.	0 35.0	100		56.0	48.0	35.0	18.0	20.9	N.P.	.015	A-1-b			22.1		
11006	315	7W	SW I	NE :	30	F	U.S.A B.L.M.	Bor.,B.G.	Alluvial Fan	240,000	10	4	1964	Cut Bank		1.9	14.5	2100	85.6	64.8	* 56.6	* 21.7	9.3	16	N.P.	.003	A-1-a			28.4	12.23	25.49
11007	318	7W	NW I	NW 2	31	F	U.S.A B.L.M.	Bor.	Alluvial Fan	320,000	10	0-1	1954				0 36.0								N.P.	.015	A-1-a			28.1		
11008			П				U.S.A B.L.M.		Alluvial Fan	160,000	10	1	1954	Cut Bank				1100							N.P.		A-1-a			26.7		
11009							,		Alluvial		10	1	1964	Cut		0.5		T	70.0		*	*									1/ F0	22 70
					00			Bor.,B.G.	Fan Alluvial	40,000		1		Cut			13.	1	78.0		*	*			N.P.		A-1-a					23.79
11010					5	F	U.S.A B.L.M.	Bor.,B.G.	Fan Gravel	64,000	10	1	1964	Bank Test	-	1.3	9.2	100	86.0	64.4	52.9	25.4	11.0	20	N.P.	.007	A-1-a	128	168	27.5	22.35	19.53
11011	32S	6W	SW S	SE I	14	F	U.S.A B.L.M.	B.G.,S.G.	Ridge	Ample			1955	Hole Cut		22.	855.7	100	-	40.5	31.5	20.1	8.3	23.5	N.P.	.070	A-1-a			23.9		
11012	32S	6W	SE 1	NE 2	22	F	U.S.A B.L.M.	B.G.		Mined Out			1952	Bank	2-11	0.	020.8	100		49.3	38.8	25.7	9.6	23.3	N.P.	.033	A-1-a			29.16		
11013	328	6W	NE S	SW 2	23			Bor.,B.G.	Talus	Mined Out			1958	-		9.	929.0	100		45.7	29.4	16.4	4.8	27.1	3.7	.039	A-1-a			22.0		
11014	32S	6W	NW S	SE 3	36	s	Utah State Land Board	B.G.,S.G.	Stream Channel	Mined Out			1952			7.9	32.4	100		43.3	27.5	12.1	3.8	24.5	N.P.	. 044	A-1-a			23.9		
11015	325	8W	M를	VE 1	12	р	L. Tree; E. C. Olsen	Bor.	Stream Channel	Ample			1955	Test Hole		0.0	10.1	89.9	Not	Crus		51.6	13.7	19.3	N.P.		A-1-b					
11016					13		E. C. Olsen	Bor	Valley Fill	100,000	2	0	1955	Test					Not	Crust	led				N.P.		A-1-b					
							E. C. Olsen		Valley Fill					Cut																		
11017		ow	2 5	SW]	18		Beaver Val.Co.	Bor.	Alluvial	Ample		_	1954	Cut	1.5-										N.P.						-	
11018						F	U.S.A B.L.M.	B.G.,S.G.	Fan Valley	250,000	12	1	1954	Bank Test	12	-	38.2	100		28.2	20.3	10.1	2.2	19.2	N.P.	.032	A-1-a			21.16	-	
11019	325	8W	SW N	NE 2	23	P		Bor.	Fill Stream	100,000	2		1955	Hole Cut	2-3	3.2	9.4	93.8	-	68.0	67.3	44.3	12.0	20.0	N.P.		A-1-b					
11020	328	8W	SE N	W 2	25		R. L. Fenton,	B.G.,S.G.	Channel	Mined Out		0	1945			-	25.0	100		30.5	24.1	12.8	3.0	19.3	N.P.	.031	A-1-a			25.14		
11021	338						U.S.A B.L.M.	B.G.,S.G.	Alluvial Fan	Ample		0-2	1954	Hole			25.7	100		39.4	28.2	13.0	3.4	21.7	N.P.	.032	A-1-a			23.7		
11022	345	8W	SW S	SE	5	F	U.S.A B.L.M.	Bor.,B.G.	Alluvial Fan					Dril	ling	nece	ssary	to e	valua	te pr	ospec	t										
11023	345	ЭШ	NE N	VW 1	3	P			Flood Plain	450,000		0-1	1965	Cut							~ ×	*	8.5	15	N.P.	.009	A-1-a	211	373	17.2	5.42	11 4
						p		RC CC	Stream Channel	8,000		0-1		Cut Bank			21.3										A-1-a			30.0	976	~ 10 7
11024								B.G.,S.G.	Alluvial			7									*	*									12 1	
11025	35S	9W	SEIS	5W []	11	P		B.G.,S.G.	Fan	5,000		1	1964	Bank	2-8	0.0	13.9	1100	76.2	48.4	42.2	29.3	6.4	11/.0	N.P.	.001	A-1-a			30.1	12.1	6.10

^{*} SAMPLES TESTED AFTER MID-1963 USE NO. 8 AND NO. 50 SIEVES RESPECTIVELY.

	LOC	ATI	ON		T	OW	NERSHIP		MATE	RIAL								TE	ST [DATA	- RE	EPRE	SEN	TAT	IVE	SAN	1PLE					
E C			TRACT	NO		CIAL	,		,		S	N N	*			BEI	FORE		ERCEN		SIS	AFTE	R		>		N O	NOISS	.s		SOD	IUM
PIT OR SITE NUMBER	TOWNSHIP	RANG	TR	QUARTER SEC		P = PRIVATE C = COMMERC CO = COUNTY F = FEDERAL S = STATE	OWNER	USE OF MATERIAL		PRESENT ESTIMATED QUANTITY (CU. YDS.)	THICKNES OF MATERIA	DEPTH OF OVERBURDER	DATE	TYPE OF SAMPLE	DEPTH OF SAMPLE	> 3"	> I"	1"	I/2"	NO. 4	NO.	NO.* 40	NO. 200	LIQUID	PLASTICIT	SWELL	A. A. S. H.O. CLASSIFICATION	IMMERSSION	AVG. P	ABRASION 500 REV.	SULP LOS	
11026	35S	9w 1	NE I	E 1	5	F	U.S.AB.L.M.	B.G.,S.G.	Alluvial Fan	30,000	15	1-3	1962	Cut Bank	1-15	0.0	31.7	100.0	69.9	44.8	37.0	29.4	6.0	15.3	N.P.	.010	A-1-a			33.0		
11027	35s	9W I	1 WP	E 2	6	F	U.S.AB.L.M.	B.G.,Bor.	Alluvial Fan Alluvial	100,000	10	2	1962	Cut Bank				100.0					9.5		1		A-1-a			6.0		
11028	35S	9W S	SE I	IW 2	6	F	U.S.AB.L.M.	B.G.,S.G.	Fan	Mined out			1961	Cut Bank		0.0	14.3	100.0	58.4	32.3	26.0	20.4	10.4	20.4	N.P.	.012	A-1-a		В	0.86		
11029	35s				6	P	J.H. Mitchell	B.G.,S.G.	Alluvial Fan	Mined out			1958	Cut Bank		5.0	26.6	100.0		30.7	23.1	16.9	7.3	32.3	N.P.	.028	A-1-a			6.12		
11030	35S	9W I	NE S	E 3	4	P(?)		Bor.,B.G.	Talus	200,000	3	1-2	1960		2-10	0.0	35.9	100.0		37.1	28.4	20.5					A-1-a			9.34		
11031	36S	9W I	NE S	W 3	4	P(?)		B.G.	Talus	10,000	2	0-1	1961	Test Hole	0-30	0.0	33.9	100.0	66.5	29.8	17.7	9.2	3.4	29.4	6.4		A-2-4			7.0		
11032	36S	9W S	SW S	W 2		P	J.S. Holyoak	B.G.,S.G.	Alluvial Fan	12,000	20	0-1	1959	Cut Bank	1-10	9.8	42.2	100.0	67.9	43.7	37.2	30.4	8.8	17.8	N.P.	.015	A-1-b			28,5		
11033	36S	9W I	E 2 S	W 1	2	F	U.S. Forest Service	B.G.,S.G.	Talus	35,000	0-10	0	1960	Cut Bank	0-7	3.3	410	100.0		27.9	18.6	10.9	7.3	21.4	N.P.	.035	A-1-a			15.92		
11034	36S	9W S	SW N	E 1	4	F	U.S. Forest Service	Bor.	Alluvial Fan	7,000		0-1	1960			26.3	55.9	100.0		43.2	34.5	24.7	15.7	29, 2	8.3	.227	A-2-4			51.6		
11035	37S	9W N	W S	W 1	4	- 1	U.S. Forest Service	Bor.,B.G.	Talus	50,000	15	0-1	1957	Cut Bank		0.0	77.6	100.0		26.0	16.7	10.2	6.4	20.4	3.2	.032	A-1-a			40.78		
11036	35S	10W E	E½ N	E 1	0	P	J.R. Thompson	Mainténance B.G.,S.G.	Cone	200,000	40	0									2007	200			1000	1				70.70		-
11037	358	10W N	IM N	E 1	7	F	U.S.AB.L.M.	Bor.,	Alluvial Fan	200,000	8	2	1958	Cut Bank				100.0		70.6	54.1	31.5	14.9	26.1	N.P.	.040	A-1-b	8				
11038	35S	LOW	SW N	E 1	8		C. Parry	B.G.	Alluvial Fan	15,000	8	1-2	1964*		1-6	5.2	14.2	100.0	86.0	54.5	54.3%	29.4	15.6	26	2	.013	A-1-b	111	208	24.18	6.68	13.14
11039	35S	LIW N	N Z N	E 3.	5	1	Department of Highways	Bor.,B.G.	Alluvial Fan	350,000	10	0	1964		2-11	0.0	17.0	83.0		58.0	51.0	42.0	19.0		N.P.	0	A-1-b					
11040	35S	L1W S	SE S	E 3.	5		C. Parry	Bor.,B.G.		75,000	15	0-2	1950				11.8	100.0	61.8	21.7	16.8	13.6	6.1							29.8	16.29	4.8
11041	36S]		13 N			S,F,P	Highway Dept. H.S. Jones	Bor., B.G.,S.G.	Flood- plain	1,500,000	10	0-2	1964	rest Hole	1-10	7.7	32.3	100.0	62.2	35.5	29.3	½ 11.8	3.1	18.0	N.P.	.001	A-1-a	143			13.4	
11042	36S]	.1W S	1 S	W 4		1	Parry Sand &.Gravel Co.	Con. Agg. B.G.,S.G.	The same of the sa	Ample	10	1-5	1963			0.0	22.1	100.0									A-1-a			-		13.3
11043	36S1	. IW N	ES	E 8		F	U.S.AB.L.M.	Bor.	Flood- plain	35,000	5	2	1964	rest Hole	2.5-8	0.0	8.0	92.0		66.0	61.0	T CR 52.0	JSHED 24.0	21	N.P.	0.5	A-1-a					
11044	36S1	.1W S	ES	E 8		F	U.S.AB.L.M.	Bor.	Alluvial Fan	40,000	10	0	1964	l .		0.0	7.3	92.7	-	74.8				22.3	3.6		A-2-4					
11045	36S1					P		Bor.	Valley Fill	1,000,000	10	0-1	1964		0-10	0.0	6.0	94.0			NO 60.0	T CR 48.0	JSHED 24.0	22	N.P.		A-2-4					
11046	36S1		E N W N		5	P		Bor.	Flood- plain	48,000	6	0-1	1964		1-9	0.0	41	59	3	33			JSHED 9		N.P.		A-1-a					
11047	36S1	1W N	ES	W 15	5	P		Bor.	Valley Fill	100,000	10		1964	Test Hole	4-9	0.0	4	96	6	53	56	T CRU 45	28	28	9.0	0	A-2-4					
11048	36S1	1W N	½ N	W 22	2	P	E.W. Leigh	Bor.	Alluvial Fan	1,000,000	10	0-1	1	Test Hole	3-9	0.0	24	76		¥5		Г CRU 32	SHED 16	21	5	0	A-1-b			8		
11049	36S1	OW W	1/2 S	E 17	,	F	U.S.AB.L.M.	B.G.,Bor.	Alluvial Fan	200,000	4		1964	Cut Bank		4.4	17.5	100.08	32.3	55.8				17	N.P.	.001	A-1-b]	10.26	8.70
11050							K. Middleton	Bor.	Valley Fill	90,000	8	0-1	1964	Test Hole	1-8	0.0	18.6	71.4	3	36.4	NO 30.6	r cru 21.4	SHED 4.3		N.P.	0	A-1-a					2

^{*} SAMPLES TESTED AFTER MID-1963 USE NO. 8 AND NO. 50 SIEVES RESPECTIVELY.

	LOC	ATI	ON			OW	NERSHIP		MATE	RIAL							***************************************	TE	ST I	ATAC	- RE	EPRE	SEN	TAT	IVE	SAN	IPLE				25	
PIT OR SITE NUMBER	TOWNSHIP	RANGE		SECTION	P = PRIVATE	CO COUNTY F = FEDERAL S = STATE	OWNER	USE OF MATERIAL		PRESENT ESTIMATED QUANTITY (GU. YDS.)	THICKNESS OF MATERIAL	DEPTH OF OVERBURDEN	DATE SAMPLED*	TYPE OF SAMPLE	DEPTH OF SAMPLE	BEI CRU:	FORE SHING 		VE A			AFTE AX. SIZ NO.* 40	NO. 200	LIQUID	PLASTICITY INDEX	SWELL	A. A. S. H.O. CLASSIFICATION	NO/	A AVG. P. S. I.	ABRASION 500 REV.	SOD SULP LO	HATE
11051	36S	11W	NE	SW 3	2 1	P	R. Middleton	Bor.	Alluvial Fan	300,000	10	0-1		Test Hole	3-10	13.	8 26.8	73.2		NOT 49.8	CRUSH 45.3	ED 38.1	11.5		N.P.		A-1-b					
11052	36S	11W	NE	SW 3	1 1	P	R. Middleton	B.G.,S.G.	Alluvial Fan	175,000	10	1-2		Cut Bank	5-18	6.2	32.7	100	70.3	40.9	32 <i>5</i>	20.1	3.9	17.0	N.P.	.001	A-1-a	387	493	26.0	7.1	16.0
11053	36S	11W	SW	SW 3	1]	Р	I. Cox	B.G.,S.G.	River Terrace	240,000	15	0	1963	Cut Bank		8.2	36.6	100	81.5		43.3	37.6	12.2	16.4	N.P.	.011	A-1-b	165	250	26	9.5	7.6
11054	The same of the same of	1			1 1	F	U.S.AB.L.M.	Bor.	Alluvial Fan	200,000	10	0		Test	1-10	0.0	4.4	95.6		NOT 76.1	67.0	ED 48.8	21.5	21.2	N.P.	0	A-1-b					
11055	37S	12W	S ¹ 2	SW NW 1	2]	F	U.S.AB.L.M.	B.G.,Bor.	Alluvial Fan	450,000	12	0-1		Test		0.0	19.5	100	82.2	61.3	54.0	37.0	9.5	15.1	N.P.	.008	A-1-b	167	240	47.5	41.0	21.6
11056	37S	12W	NE	SE 1	1 1	P	A.L. Graff	Bor.	Alluvial Fan	250,000	20	0	1963	Test Hole		0.0	0.0	100		88.7			52.9	21.3	1.4	1.2	A-4(4)					
11057	37S	12W	SW	NE 2	2]	F	U.S.AB.L.M.	Bor.	Valley Fill	Mined out			1964	Test Hole	0-7	0.0	6.0	94		NOT 77	CRUSH 69		29	27	8		A-2-4					
11058	37S	12W	N ¹ 2	SE 2	8 1	P	G.B. Anderson	Bor.	Alluvial Fan	200,000	20	0.5	1963	Test Hole Test	0-7	0.0	0.0	100		99.5	97.1	86.8	73.8	24.1	3.4	0.2	A-4(8)					
11059	37S	12W	NW	NW 3:	3 1	P	G. A. Berry	B.G.,Bor.	River Terrace	100,000	8	1	1964	Hole	1-8	13.3	50.0	100	71.3	46.1	39.0	23.6	10.1	18	N.P.	.010	A-l-a	189	328	37	12.6	14.7
11060	385	12W	NW	NW	9 1	P	H. H. Gubler	Bor.	River Terrace	150,000	20	0-1	1963	Test Hole	0-20	0.0	0.0	100		100	99.7	94.0	60.5	17.3	3.2	1.0	A-4(5)					
11061	38S	12W	SE	SE]]	P	R.J. Williams	B.G.,Bor.	Alluvial Fan Flood-	150,000	10	0-1	1964	Cut		3.7	31.4	100	65.8	34.7	27.5	17.4	10.1	24	2	.007	A-1-a	79	353	30	16.4	16.4
11062	38S	12W	E	SE 8	3 1	P	D.E. Davies	B.G.,S.G.	plain Flood-	300,000	10	2	1964	Bank		0.0	21.0	100	76.1	48.9	42.2	30.4	10.8	20.3	N.P.	.007	A-1-a	118	247	32.2	8.99	5.34
11063	38S	12W	NE	NE '	1		D.E. Davies State Land	B.G.,Bor.	plain	See M1-2 Form	15	2	1964	Stock Pile				100	92.1	85.0	67.9	18.3	4.1	15	N.P.	0.14	A-1-a	93	232	40.9	32.2	25.0
11064	385	12W	SW	NE 1	S		Board	B.G.,Bor.	Talus	35,000	15	0-1	1963			6.3	40.6	100					11.8	21.1	5.2	.008	A-1-a	**	209	34.0	24.1	10.0
11065	38S	12W	SE S	SE 17	P	, 1	D.E. Davies		Slope Wash	50,000	4	0-1	1957	Test Hole	0-12	16.9	29.6	87.3	-	NOT 66.6	55.3	ED 41.9	30.8	22.1	4.5	0.32	A-2-4					
11066	31S	10W	SE 1	W 14	F	7 1	U.S.AB.L.M.		River Terrace River	30,000	15	1-2	1964	Bank	5-15	0.0	0.0	100.0	80.2	52.4	41.9	17.1 *	8.8	17	N.P.	.003	A-1-a			25.5	11.0	11.0
11067	31S	10W	NE S	SE 27	F	7 1	U.S.AB.L.M.		Terrace	75,000	20	2-4		Bank		0.0	10.1	89.9	73.1	49.0	39.8	14.8	3.1	23	N.P.	.013	A-1-a					35.7
11068	33S	10W	NW S	SW 31	P) [S. Benson	B.G.,S.G.	River Terrace	75,000	10	1-3	1964	Cut Bank Cut			ļ	100	73.0	18.7	8.8	3.7	2.1				A-1-a			24.0	2.94	12.27
11069	33S	11W	NE S	SW 31	F	1	U.S.AB.L.M.	B.G.,S.G.	River Terrace	16,000	6	1-3	1964		0-6	0.0	0.0	100.0	90.5	74.6	64.8	39.0	18.2	21	N.P.	.008	A-1-b					16.9
11070	34S	11W	S½ S	SW 30	P	, ,	A. Williams	B.G.,S.G.	Alluvial Fan	350,000				Bank			-	-						-	N.P.	.011	A-1-b			32.0		
11071	348	12W	SE S	SE 3	F	'	J.S.AB.L.M.		Alluvial Fan	200,000	4	0-1	1965	Cut Bank	0-5	0.0	0.0	100.0	93.4	83.2	72.2	20.9	3.9	18	N.P.	.004	A-1-a			24.8	12.5	12.5
11072	34S	12W	W½ N	1E 3	F		J.S.AB.L.M.		River Terrace Lake	40,000	10	0-1	1946	Test Hole	3-7		20.4	100	69.9	31.0	24.9	17.2	7.5	24.4	5.8	.045	A-1-a			29.82		
11073	33S	12W	NE S	SE 30	P	,		B.G.,S.G.	Terrace	200,000	10	0-1	1954			0.0	0.0	100		70.1	52.0	25.1	4.8	16.3	N.P.	.020	A-1-a			30.4		
11074	32S			W 19 NE 25		· 1	J.S.AB.L.M.	B.G.,S.G.	Alluvial Fan	30,000	10	0	1946	Cut Bank			6.1	100	90.3	75.2	54.2	13.9	3.8	18.5	N.P.	.006	A-1-a			27.1		
11075		12W	SW	<u> 1M 30</u>			3 USE NO. 8 AND N	B.G.,S.G.	Alluvial Fan	300,000	15	0-1	1962	Test Hole		0.0	14.7	100	84.9	61.7	47.9	26.5	9.0	19.0	N.P.	0.10	A-1-a			30.0		

LOCATION	OWNERSHIP	MATER	RIAL				7	rest	DATA	- RE	PRES	SENT	ATIV	E SA	MPLE		1.0		
PIT OR TE NUMBER TOWNSHIP RANGE ACRE TRACT ACRE TRACT SECTION	PRIVATE COMMERCIAL COUNTY FEDERAL STATE O O A A A A A A A A A A A A A A A A A	USE TYPE E	THICKNESS OF MATERIAL DEPTH OF OVERBURDEN	DATE SAMPLED *	TYPE OF SAMPLE DEPTH OF	BEF	ORE HING	PERCEN CRUSHI	T PAS	SING I MA			LIMIT	INDEX	A. S. H.O.	IMMERSSION	AVG. P.S.I. RASION	SUL	DIUM PHATE DSS
SITE N TOWN RAN 40 ACRE QUARTER	Utah State	MATERIAL DEPOSIT	(CU. YDS.)			> 3,,	> I,,	1" 1/2"	NO. 4	NO. 10	NO.* 40	NO. 200	PLA	- s	A. A. CLASS	LIN WO/	I m U	+4	-4
11076 37514W SE NE 2	S Land Board	B.G.,S.G. Fan Alluvial	20,000 10	1946 H			34.0 10	0 69.3	32.32	22.0	9.2	3.8 2	3.9 N.	P03	2 A-1-a		28.1		
11077 36S14W SW NW 20	F U.S.A B.L.M.	11 1 1	400,000 20 1	1964 B	Bank	0.0	2.5 10	0 91.0	64.04	3.0	10.5	5.0 2	L N.	P00	8 A-1-a	154	337 23.1	14.3	15.25
11078 36S15W NE SW 16	P J.T. Forsythe	A POST OF THE PROPERTY OF THE	160,000 20 1	1948 H	Cest Hole 0-8		8.2 10	00	70.5	6.4	17.4	3.7 1	9.3 N	P01	3 A-1-a		29.1		
11079 36S16W SE NE 17	C. T. Holland	Bor. Fan Lake	32,000 10 1	1 1	est	0.0	0.0 10	00	9	01.3	69.4 4	\$5.6 20	5.4 7	7	A-4(4)				
11080 35816W NE NW 33	P C. Twitchell H. A. Wood	Bor. Floor Dune	40,000 5 0	1954 H		0.0	0.0 10	00	91.9	32.4	52.1 2	22.7 20	6.9 N	P. 0.1	A-2-4				
11081 35816W SW SW 21	1)	Bor Sand	50,000 3 0	1954	Cut	0.0	0.0 10	0 100	100	8.3	83.2 4	48.9 2	3.9 1	9 1.5	A-4(2)				
11082 35816W SW SW 16	S, Co Iron Co.,	B.G.,S.G. Terrace	30,000 10 3-5	1954 B			10	00	69.3	8.0	25.3	7.5 2	1.0 N	P01	.0 A-1-a		26.7		
11083 35816W NW NW 3	P	Bor. Lake B.G.,S.G. Terrace	50,000 5 2-4	1954 B	1	0.0	0.0 10	00	72.4	54.3	13.7	2.3 2	2.3 N	P02	3 A-1-a		29.9		
11084 34816W SE SE 8	P J.C. McGarry	Bor. Lake	50,000 7 0-1	1954 H	lole 2-8	0.0	0.0 10	00	93.17	78.8	41.2 1	11.0 2	0.3 N	P01	.0 A-1-b				
11085 33816W SW NW 27	Co. Iron Co.	11	100,000 2-5 2-4	1957 B		0.0	1.5 10	00	65.3	8.6	17.6	6.6 1	9.8 N	P01	7 A-1-a		28.6		
11086 35817W SW NW 26	F U.S.A B.L.M.	B.G., Bor. Fan	200,000 15 1	1964 B	Bank	0.7	11.7 10	0 79.7	55.04	* \$5.2	21.2 1	13.6 2	4 3	.00	06 A-1-a	48	163 21.4	8.42	10.68
11087 35818W NE SE 11	F U.S.A B.L.M.		325,000 12 2	1964 B	Bank	0.0	18.8 10	00 80.7	57.7	* +9.0	17.7	11.2 2	3 5	.00	9 A-1-a	247	368 24.9	8.34	10.38
11088 34819W NE NE 25 34 19W SE NE 36	P B. Thorley		300,000 10 1	1958		11.0	22.7 10	00	68.65	57.6	33.6	11.6 2	1.9 N	P01	.0 A-1-a		26.6		
11089 34818W NW SW 31	P R. Thorley		300,000 5 1	1958 B		0.0	23.5 10	00	53.44	1.9	23.4	9.7 2	1.4 N	P00	08 A-1-a		29.8		
1109035S 19W NW NW 2	Utah State S Land Board	B.G.,S.G. Terrace Alluvial	300,000 20 1	1941 H	est Hole 0-10		29.5 10	00 83.6	61.04	+2.2	12.7	4.6		.06	52		26.8		
1109135S 19W NE SW 9	F U.S.A B.L.M.		550,000 25 0	* C 1964 B	Bank	4.3	14.3 10	00 89.1	69.16	60.0	23.5	10.1 1	9 N	P00	A-1-a		26.5	10.5	10.40
		,																	
					2														
															*				

^{*} SAMPLES TESTED AFTER MID-1963 USE NO. 8 AND NO. 50 SIEVES RESPECTIVELY.

	LOC	ATIC	NC			OWI	NERSHIP		MATE	RIAL								TE	ST	DATA	- RE	EPRE	SEN	TAT	IVE	SAN	1PLE					
PIT OR	TOWNSHIP	RANGE	40 ACRE TRACT	QUARTER SECTION	SECTION	P = PRIVATE C = COMMERCIAL CO = COUNTY F = FEDERAL S = STATE	OWNER	USE OF MATERIAL	TYPE OF DEPOSIT	PRESENT ESTIMATED QUANTITY (CU. YDS.)	THICKNESS OF MATERIAL	DEPTH OF OVERBURDEN	DATE SAMPLED **	TYPE OF SAMPLE	DEPTH OF SAMPLE	BE CRU	FORE SHING > 1"		VE A			AFTE AX. Siz NO.* 40	NO. 200	LIQUID	PLASTICITY INDEX	SWELL	A. A. S. H.O. CLASSIFICATION	IMMERSSION	ME	ABRASIC 500 RE	SOD SULP LO	HAT
2		DI D	T		000000000000000000000000000000000000000			The second secon		I				I		<u>I</u>	1	<u> </u>							<u> </u>	l		WO/	W/	\dashv		
G		В	1	1																										+		
									8																					+		
																														+		
			1	1																												
			+	\dashv																												
			+	+																												
		-	+	1	-													DE CONTRACTOR DE									0			_	-	
			+	+	$-\parallel$																									-		
			\dagger	\dagger	\dashv																									-		
			\dagger	\top	1				-1																					+		
	\perp				\perp		4																		e e							
	\dashv	_	_	+	\parallel																											
-	\dashv	-	+	+	\parallel									n																		
	-	\dashv	+	+	+																			0							_	
	+	\dashv	+	+	+																										-	
	\forall	\neg	\dagger	+	\parallel																								+		\dashv	
	\top	\top	\dagger	+	1																								+			
																													\dashv			
												,			-														1		\dashv	
																														_	\dashv	

^{*} SAMPLES TESTED AFTER MID-1963 USE NO. 8 AND NO. 50 SIEVES RESPECTIVELY.

LOCATION		OW	NERSHIP		MATE	RIAL								TES	ST C	ATA	- RE	PRE	SEN	TAT	IVE	SAN	1PLE					
RACT		CIAL					S	N	*			BEF	ORE	SIEV	E AN			AFTE	R		\		ION	SSION	. s	-	SOD	
SITE NUMBER TOWNSHIP RANGE 40 ACRE TRACT QUARTER SECTION	1 11	P = PRIVATE C = COMMERC CO = COUNTY F = FEDERAL S = STATE	OWNER	USE OF MATERIAL	TYPE OF DEPOSIT	PRESENT ESTIMATED QUANTITY (CU. YDS.)	THICKNESS OF MATERIAL	DEPTH OF OVERBURDEN	DATE SAMPLED	TYPE OF SAMPLE	DEPTH OF SAMPLE	> 3"	> I"	l"	1/2"	NO. 4	* NO.	NO.* 40	NO. 200	LIGUID	PLASTICIT INDEX	SWELL	A. A. S. H.O. CLASSIFICATION	/OMPRESSION	WE AVG.	ABRASION 500 REV.	LO +4	PHATE SS -4
1109234S 8W NW NW		Р		Borrow	Fan	980,000	12	0	1968	Test Hole	0–17			100		98	97	96	61	NP	NP	.75	A-4(5)					
SE NE 11093838 8W SW NW	20	Р	Davenport & Mitchell	Borrow		330,000	7	3-8	1967	Test Hole	6–11	100		80		40	31	17	7	NP	NP	.04	A-1-a(0)					
SE NW 1109434S 9W NE SW	17	P	Adams &	B.GS.G.	8	775,000	16	3–10	1967	Test Hole	8-12			100		99	98	60	60	NP	NP	.24	A-4(5)					
1109534S 9W NW NW	15	P	C. Taylor	Borrow		475,000	15	0	1965	Test Hole	0-11			100		97	96	92	41	NP	NP	.35	A-4(4)			_		
1109634S 9W NE SE	21	P	D.W. & V.M. Adams	Borrow		590,000	12	1/2	1967		6-11	100		93		86	84	81	27	NP	NP	0.0	A-2-4(0)					
1109734S 9W SE SW	20	P	Mortensen	Borrow		568,000	11	0	1967		8-10	100		91		65	60	56	38	22	4	0.0	A-4(1)					
1109834S 9W N등 SW	30	F	BallaMa	B.G.,S.G.		327,000	10	1	1965	Test Hole	1-10	100		61		32	26	18	6	24	3	.18	A-1-a(0)					
1109934S 10W SW SE	25	F	B.L.M.	Borrow		160,000	10	0	1966		0-3	100		79		56	50	42	18	25	5	0.0	A-1-b(0)					
1110035S 11W NE SE	24	F	B.L.M.	B.G.,S.G. Riprap			12	1-2	1966	Test	3-7	100		91		69	55	39	12	NP	NP	0.0	A-2-4(0)					
1110135S 10W S NE	3	P	Herbert B. White	Borrow		2M	30	0	1965		1-11	100		75		40	31	18	5	NP	NP		A-1-a(0)					
	25	F&P	B.L.M. Esplin	Gravel		400,000	10	1-2	1966		15-55			100		50			13	NP	NP	.002	A-1-a(0)	119	273	34	(1	1.35)
1110385S 11W SW SW	34	F	B.L.M.	Gravel		300,000	11	1-2	1968	Test	5-10	98	70	100		46			5_	NP	NP		A-1-a(0)	163	385	30	(6	.99)
1110435S 11W NE SE	35			Borrow		74,000	12	0–1	1968	Test	3-12			83		58	51	45	18	NP	NP	.07	A-1-b(0)					
1110536S 11W N능 NE	27	F	B.L.M.	Borrow		110,000	11	0	1965	Test	4-9	100		91		72	63	52	29	20	NP	0.0	A-2-4(0)					
1110631S 7W SE	20	F	B.L.M.	B.G.,S.G.					1968	Most	11 2	95	59	99	73	39	29	8	4	NP	NP	.004	A-1-a(0)	150	226	22	3.37	7.30
1110731S 7W W2	11	F	B.L.M.	B.G.,S.G.		528,000	10	1-4	1968	Test Hole	10.5	94	62	99	70	41	25*	11*	5_	NP	NP	.002	A-1-a(0)	184	303	24	1.64	6.21
1110831S 7W NW	31			B.G.,S.G.					1968		3-12	90	56	100	70	37	29	9	4	NP	NP	.002	A-1-a(0)	119	227	23	1.41	3.39
1110935S 11W SW SE	26	S	Road Comm.	Borrow		000			MINE	D OUT	ļ																	
1110935S 11W N2 NE	35	S	Road Comm.	Borrow					1966		0.2	100		99		95	93	85	25	NP	NP		A-2-4(0)					
1111036S 11W SW NE	3	P	Homer S. Jones	B.G.,S.G.	Ctmoore	000	_		MINE	D OUT			-															
NW NE 1111036S 11W N NW		P	J.H. Nelson Road Comm.	B.G.,S.G.	Stream Channel Stream				1966		6-15	100		76		28	19	12	2	NP	NP		A-1-a(0)					
1111136S 11W SE SW	1 3			B.G.,S.G.		000		-	MINI	D OUT Test	-	-																
1111231S 7W SE	20	F	B.L.M.	B.G.,S.G.		418,000	9	5	1969	Hole	-	13	20	99	63	34	26	17	3	NP	NP	.008	A-1-a(0)	91	242	21		
1111332S 7W NE 5W	6		-	Borrow		125,000	13	0.1	1,968	Hole	1-9	100		81		55	45	25	88	NP	NP	-	A-1-a(0)					
1111435S 10W NE SE			63 USE NO 8 AND	Borrow					RECI	ETVED E	TT RE	PORT	FORM	MAY	970													

^{*} SAMPLES TESTED AFTER MID-1963 USE NO. 8 AND NO. 50 SIEVES RESPECTIVELY

	LOC	ATI	ION		I	OW	NERSHIP		MATE	RIAL				-		-		TE	ST [DATA	- RE	PRE	SEN	TAT	IVE	SAM	APLE					
PIT OR SITE NUMBER	TOWNSHIP	RANGE	40 ACRE TRACT	QUARTER SECTION	SECTION	P = PRIVATE C = COMMERCIAL CO = COUNTY F = FEDERAL S = STATE	OWNER	USE OF MATERIAL	TYPE OF DEPOSIT	PRESENT ESTIMATED QUANTITY (CU. YDS.)	THICKNESS OF MATERIAL	DEPTH OF OVERBURDEN	DATE SAMPLED*	TYPE OF SAMPLE	DEPTH OF SAMPLE	BEF GRUS	FORE SHING > I"		FRCEN RUSHIN			AFTE AX. SIZ NO.* 40	NO. 200	LIGUID	PLASTICITY INDEX	SWELL	A. A. S. H.O. CLASSIFICATION	/OM PERSSION	AVG. P.S.I.	ABRASIO 500 RE	SOD SULP LO:	HATE
11115	34S	10W	NW	SE	35			Borrow					REC	EIVED Test	PIT I	VALU.	TION	REPO	RT FO	RM MA	Y 197	′ 0										
11115	315	7W	NE NE	NE NE	10	F	B.L.M.	Borrow		250,000	8	1	1970	Hole	1-14			70		45	37*	24*	11	NP	NP	0.00	A-1-a(0)					
11117	34S	8W		NW	30	F	B.L.M.	Gravel		100,000	9	0-1	1970	Test Hole	0-14	97	73	99		47			12.9	NP	NP	0.001	A-1-a(0)			33		
			_										-		_															\blacksquare		
			_											-	<u> </u>	_												-				
								-				-	-	-			-	-							_							
	_	_				-						-	-		-	-	-	-														
-	_	-	-								-		-	-	-			╂	-					-	-							
	ऻ	-									-	-	-	-	-		-	-						_	-							
	_	_	_									-	-	-	-		ļ							_	-			-				
	_	-								8	-	-	-	-	-	-	-	-							-		-					
	-	-											-	-	-			-							-							
	-	-									-	-	-	-	+	-	-								-							
	-	-	-							-			-	-	+	-	-															
	-	-									-	-	-		-		-						=		-		-					
	\vdash	-									-	-		-			-							-								
	-		-								-	+-	-	+	-	-	-	-														
	-	-	-		\vdash						-		-			1		+							-							
	-	\vdash	\vdash		\vdash						-	-													-							
	\vdash	-	+		H		-				-		-		-		+															
-	-	-	+								+	-	1		+			-														
	-	\vdash	+								-		#					-														
	-	-	+	-	H							+	\dagger	1	<u> </u>																	
	\vdash		+		\vdash					1	1		#																			
								11			1		11	1					1			1										

^{*} SAMPLES TESTED AFTER MID-1963 USE NO. 8 AND NO. 50 SIEVES RESPECTIVELY.

AREAS INVESTIGATED BUT REJECTED AS CURRENTLY POTENTIAL SITES

	LOC	ATIC	NC		1								RI	EPRE	SEN	ITAT	IVE	SAI	MPLI	E						
			5	NO	1			LED			, DEE		SIEV					INC		>	Z O	S	7.	SOD	IIIM	
SITE	TOWNSHIP	RANGE	40 ACRE TRACT	QUARTER SECTION	SECTION	OWNER	TYPE OF DEPOSIT	DATE SAMPLED	TYPE OF SAMPLE	DEPTH OF SAMPLE	> 3"	ORE SHING		1/2"	No.		No.	No. 200	LIQUID	PLASTICITY INDEX	NO/	M COMPRESSION A AVE. P.S. I	ABRASION 500 REV	SOD SULPI LO	HATE SS	REASON FOR REJECTION
11-A	36S	9W	SE	SE	14	U. S. Forest Service	Stream Channel	1961	T,H	0-4	15.3	44.8	100	54.6	38.0	28.9	18.9	4.7	37.5	13.0			42.9			Excessive Wear, L.L., P.I.
11-B	365	8W	SE	NW	3	U. S. Forest Service	Valley Fill	1961					100										25.5			Excessive L.L., P.I., Swell
11-C	36S	9W	SE	NW :	36	U. S. Nat. Park	Talus	1960	Cut Bank		4.2	46.0	100	79.3	47.1	36.6	27.1	14.2	26.2	9.8			38.0			Excessive Wear, L.L., P.I., Swell
					\parallel																					
					\parallel																	<u> </u>				
				\perp	\parallel																					
			\perp	\perp																						
			_	\perp	\parallel																					
		\perp		\perp	\parallel																					
	Ш	_	_	\perp	\parallel																					
		\perp	\perp		\parallel																					
			\perp		\parallel																					
					\parallel																					
			\perp	\perp	\parallel																					
		\perp	\downarrow	_	\parallel																					
			\perp	\perp	\parallel	,																				
		\dashv	\perp	\perp	\parallel																					
		_	\perp	\perp	\parallel																					
		\dashv	4	1	\parallel																					
		\dashv		\perp	\parallel																					× · · ·
		_	\perp	\perp	\parallel																					